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By means of the statistical theory of shell stability il, 23, the specific 
problem is considered of the probability of snap-through. if the load 
lies between the lower and upper critical values. The shell parameters 
are taken as fixed, and the probability of snap-through is postulated as 
due to the presence of exciting forces which are representative of a 
certain stationary random process. The solution is connected with the 
study of the nonlinear forced oscillations of a shell (or other elastic 
system having the possibility of jumps) under random forces, and from 
this point of view has an added interest for such problems as may arise. 
for example. in the theory of aeroelasticity. It is presupposed that 
during variations in the generalized coordinates and velocities the 
probable after-effects are missing. It is known that this is true if the 
spectral density of the excitation is constant in the region of the 
natural frequencies (white noise excitation) 131. One may treat the shell 
problem as a system with one degree of freedom and so the idea of the 
absence of probable after-effects is admissible to a first approximation 
during the evolution of the coordinates and velocities if the excitation 
has the properties of white noise, The excitation for this spectral 
density must be described by the value corresponding to the natural fre- 
quencies. It is necessary to know the error of such a method in the in- 
vestigation. As a basis one assumes that it decays strongly with decrease 
in damping in the system and with the correlation time of the excitation 
[41 * 

My sincere thanks are extended to A.F. Vrzhfzhevskii for much help in 
the calculations required for the example. 
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1. I& consider a long hollow cylindrical panel of radius 5, width b, 

thickness h, compression nodulus and Poisson’s ratio E and v. ft will be 
assumed that the edges y = 0 and y = b (coordinate y along the arc) are 
hinged to immovable ribs. The shell Is under uniformly distributed pres- 
sure of intensity q which is a random function of time. The problem con- 
sists in the determination of the probability of snap-through of the 
shell during an interval of time At. 

Consider a panel with not too large a value of the curvature parameter 

k==bs/Rh 11. I‘ 

Assume [51 the deflection to be approximated with sufficient accuracy 

the expression 

w = h{ sin (ny / b) (1.3; 

After calculation by the usual method, we obtain for the potential 

energy of the shell and the external forces 3 per unit length of shell, 
and for the kinetic energy T 

Here p is the mass per unit area of middle surface, and 

(1.4) 

The stochastic differential equation of motion including the dissipa- 
tion term is, in Lagrangfan form 

. . 2Eh3 ni3* 
b = - @o-’ 5 - b4 (1 _ ~3) p K 

The coefficient @p’-’ may be expressed in terms of the decrement 

the frequency o of natural oscillations about the undeformed state 

@o-r = wbn-’ 

It is easy to see that 

Further, we set 

Eh” 
02=b4(1 _Y3)&-$i) 

9=M9IE(lf (Mq = const) 

t) re- and treat M9 as a determinate part of the load; the fluctuation e( i 
presents a centered stationary random process with a known spectral 

(I 5) 

A and 

(2.6) 

(1.7) 

(1.8) 
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density f<(o) = f as its excitation. Equation (1.5) may be written. 
taking account of (1.81, as 

2Eha 
I/’ = b* (1 -- 9) p -- 3* (Ml.) (1.9) 

We introduce a density of probability distribution p( t, 5, iI deter- 

mined in the phase plane of the variables 5, 5. By virtue of the argu- 
ments previously proposed, it is assumed that the process (5, 5) is one 
without after-effects (i.e. a Markov process), and that the function 
p( t, 5, 5) must satisfy the known equation of Kolmogorov [61’ which in 
this case has the form 

. CP )I @P 
-BP+5-- a p +aaF, 

W 
~=$$j$ (1 .iO) 

As has been shown, the function f must be chosen in accordance with 

the spectral density of the exciting pressure t(t) which corresponds to 
the frequency 0. The equation of Vorovich [2] is obtained from Equation. 
(1.10) if the effects of the order of duration pp-1 are neglected and if 
variations of the coordinates are considered as a Markov process. 

It is easy to convenice oneself that Equation (1.10) has a stationary 

solution 

(1 .li) 

An analogy with 
a force field may 
Vorovich equation 
tion. 

the Maxwell-Boltxmann distribution in the presence of 
be noted. The corresponding stationary solution of the 
has, at the same time. the form of a Gibbs distribu- 

2. For A_ < MA 

values, the shell 
They are singular 
equation of equilibrium 

< A,, where h, and h, are the lower and upper critical 
has three equilibrium states 51, 52. c3 (51 < g2 < c3). 
points of Equation (1.91 for j = 0 and roots of the 

The equilibrium at points <I and g3 is stable according to Liapunov, 
and unstable at 52. We suppose that initially at time t,, the shell is in 
an unexcited state $1 with no initial velocity. Our problem consists in 
determining the probability of snap-through during the interval Lt,, fu+ 
At]. First of all we must distinguish the probability of the shell over- 
shooting the excited equilibrium state c3, surmounting a potential barrier 
H= W$ - V(511, from the probability that the shell will be found in 
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the neighborhood of the state g3 at time te + At. 

The first of these probabilities (a function of At and the initial 
values of the coordinates and velocities) satisfies the equation con- 
jugate to (1.10) and the corresponding boundary conditions. It reduces 
to unity as At - 0~. There remains the second probability, denoted by 
P(,/At). 

It is known 17) that any distribution satisfying Equation (I.101 re- 
duces to the distribution (1.11) as f * m. Therefore, for At > 7, where 
T is the relaxation time, the probability P(*/At) must be calculated 
according to the distribution (1.11). Vorovfch [23 has shown a method for 
such a calculation. 

Of course the equilibrium distribution (I.111 and so the probability 
P(e/At) calculated in this way give no information on the history of the 
shell during the relaxation time. Therefore we determine the probability 
of the first snap-through taking At small by comparison with 7. In this 
case both of the above mentioned probabilities coincide. We make use of 
the following considerations laid down by Kramers 1~1 for finding P(*/At). 
We shall consider that the function p(f, 5. (1 represents an ensemble in 
the sense of classical statistical physics (solely for convenience in 

terminology). 

In correspondence with initial conditions we may set 

(2.2) 

We describe the process of transformation of the distribution (2.2) 
into the distribution (1.11). At the point cl there is a profusion of 
ensemble systems for t = to by comparison with (1.111, (with an in- 
sufficiency at the point <,I, and so in the transformation process there 
will occur diffusion of the ensemble systems from j, to s3 through <g. 
The probability P(*/At) may be determined as follows by 

P(*,At)==$ 

where j is the diffusion flow per unit time and n is the number of 

ensemble systems in the neighborhood of the point 51. 

For determination of the probability of the first snap-through it is 

natural to take the ensemble density at the neighborhood of 
small by comparison with that in the neighborhood of gl, In 
limit ourselves to force excitations of comparatively small 
satisfying the condition 

is negligibly 
addition, we 

energy, 

(2.4) 
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This assumption gives the possibility of calculating the diffusion 
flows as stationary and slow in the sense that the appearance of snap- 
through precedes the establishment of the equilibrium distribution (1.11) 
in the neighborhood of gl. Consequently, the relation 

03 

i= 
s ~1 G I) &t (2.5) 

--oo 

is justified. Here ~~(5, 5) satisfies Equation (1.10) near g2 and the 
conditions 

It is easy to convince oneself that the function 

pt = C exp [- sv (tP)] J/-T ew [- & (G? + ($$ (5 - U8)] x 
&-a%---Gf 

x \ exp[--(z-Pp-l)~]k 
-cl? 

~=~+~~_~~~~* t2e7) 

fulfills these requirements. 

Upon substitution of (2.7) into (2.7) and integrating, we find that 

For the calculation of n, it is supposed that the equilibrium dis- 

tribution (1.11) is realized near cl, as shown. We have 

By substitution of (2.8) and (2.93 into (2.3) we obtain 

Formula (2.10) is obtained from a representation of the (5. 5) process 
as a Markov process. If, following Vorovich t21, effects are neglected 
which occur during an interval of the order of pB1 and if 5 is taken as 
a Markov process, then analogous considerations give [91 
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(2.11) 

It is known, for example, from (1.6), that A = 0.005 -_ 0.05 for steel 
construction. It follows that in this case by using (2.11) we neglect 
effects occurring in intervals of the order of several tens of periods of 
the natural oscillations. 

We reemphasize that Formulas (2.10) and (2.11) are valid for At << T. 

The relaxation time may be determined as the time required for the 
ensemble density at L3 to achieve the value calculated from (1.11) as a 
result of the diffusion flow j. It is evident that the larger j, the 
smaller T. It may be concluded from Formula (2.8) that the relaxition 
time decreases with increasing a, i.e. the spectral density of the excita- 
tion, and increases with increasing A, the damping. According to Formula 
(2.8) the quantitative estimation of -r is not possible since the formula 
holds only at instants of time when the ensemble density is still negli- 
gibly small at c3. 

We conside*, further, the probability P(*/2w0’) relative to the 
period (2wo-‘) of the natural oscillations. We introduce the dimension- 
less parameters 

8 = h/b, cp = fo / E” 

Formulas (2.10) and (2.11) take the form 

(2.12) 

3. Below are given calculated results from Formulas (2.13) and (2.14) 
for an aluminum panel with k = 10, 

= 1.6 mm, 6 = 0.5 x 10V2, and At = h 

10 x 2*0-l. The spectral density f 
was taken as the acoustical pressure -J 
on the fuselage of a “Comet” 1 air- 

plane. Values of L1 and c2 were found _6 

graphically. The upper critical load 

A+ was equal to 19.1 and the lower 

critical load ?L was negative. 

The figure shows the relation be- 

tween P(*/At) calculated from (2.14) 

and h.Gi for different values of A. It may be noted that there is a 
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substantial probability of snap-through for loads less than A+. For 
example, for A = 10m3 the probability of snaR-through is practically 

unity beginning with Mh = 6.9. We remark that Equation (2.4) is satisfied 
with sufficient accuracy for values of MA corresponding to points on the 
curves. 

It has been noted above that the ratio s of the probability of snap- 
through from Formula (2.14) to the probability from the more exact 
Formula (2.13) must reduce to unity with increasing A. We present values 
of s calculated for certain values of A for three values of MA: 

AW= 2 4 6 8 20 40 60 

s 10-‘= 20 9.8 6.6 4.8 2.0 0.88 0.65 

s 10-2=19 9.5 6.3 4.7 s 10-s= 18 9.0 6.0 4.5 ::: 0.95 0.89 :*s: 

~~~~~‘ ;] 

. (MGi) 

It is seen that within physically realizable limits of A Formula (2.14) 

raises the result appreciably. 

It is easily concluded from the figure and from (2.13) and (2.14 that 
the probability of snap-through appears to be very sensitive to changes 
in the load MA, the decrement A, the geometric and physical character- 
istics of the shell; and this may be the reason for the scatter of ex- 
perimental data repeatedly observed. 

For the numerical work connected with these examples I acknowledge 
the help of L.F. Vrzhizhevskii, to whom I express my sincere thanks. 
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